If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-7u-10=0
a = 3; b = -7; c = -10;
Δ = b2-4ac
Δ = -72-4·3·(-10)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-13}{2*3}=\frac{-6}{6} =-1 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+13}{2*3}=\frac{20}{6} =3+1/3 $
| -5-4f=-6-f+4 | | -3z=4-z | | 9-9g=-10+10g | | 75s=-66s^2 | | 5s^2+13s+8=0 | | 5s^2+13+8=0 | | 3/5x+2/5=1 | | 26=-4(3y+6) | | 7/y+1=29 | | 12p+p=12p+p | | -6(3d+7)=32 | | 48w^2-27=0 | | 1/2(x(2x+4)=35 | | 6(10+4x)=-60 | | 5(7x+9)=395 | | -8m+4=10-7m | | -6(-3x-5)=102 | | 6n+9-8=-24 | | -9c+1=10-8c | | -20=-45h^2-80h | | 5(3x+8)=-35 | | 3(1x+7)=39 | | 5(3x+8)=145 | | (x+1)(x+4)=(x+2)(x+5) | | 6-7p=-8p | | 7(1x-10)=14 | | -3p=9-4p | | 7x-7x+49=24+5x | | 8(m+1)=-(-5m+4) | | 6r+8-3r=28 | | 8(m+1)=-(-5m+4 | | (1+r)^10=1.629 |